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SUMMARY
Background: In this article, we describe qualitative and 
quantitative methods for assessing the degree of agree-
ment (concordance) between two measuring or rating 
techniques. An assessment of concordance is particularly 
important when a new measuring technique is introduced. 

Methods: We give an example to illustrate a number of 
simple methods of comparing different measuring or rat-
ing techniques, and we explain the underlying principle of 
each method. We also give further illustrative examples 
from medical research papers that were retrieved by a 
 selective literature search.

Results: Methods of comparing different measuring or rat-
ing techniques are of two kinds: those with a nominal rat-
ing scale and those with a continuous rating scale. We 
only discuss methods for comparing one measuring or 
 rating technique with another one. Moreover, we point out 
some common erroneous approaches to concordance 
analysis.

Conclusion: Concordance analysis is needed to establish 
the validity of a new diagnostic measuring or rating tech-
nique or to demonstrate the near-equivalence of multiple 
measuring or rating techniques. Erroneous approaches to 
concordance analysis can lead to false conclusions. 
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M any diagnostic methods in medicine carry the 
risk of misdiagnosis. All physicians sometimes 

make diagnostic errors, any two physicians will some-
times disagree on a diagnosis, and even the technical 
measurements on which diagnoses are based are never 
perfectly accurate. A common feature of medical diag-
nosis and technical measurement is that both of them, 
as a rule, are erroneous, or at least susceptible to error. 
In this article, we will refer to persons making diag-
noses, as well as to diagnostic methods and measuring 
techniques, as “raters,” and to the diagnoses and 
measurements that they make as “ratings.”

If some technique exists with which the quantity of 
interest can actually be measured without error, this 
technique is called a “gold standard.” Now, suppose 
that a new technique is to be introduced for measur-
ing tumor volume (for example) more readily, or with 
less trouble for the patient, than with the established 
technique (or gold standard). We will then want to 
know how well the measurements obtained with the 
new technique agree with those obtained by the old 
one. A common but incorrect method of comparing 
two measuring techniques for a quantity on a con-
tinuous scale (e.g., tumor volume) is to calculate a 
correlation coefficient between two sets of measure-
ments obtained by the two techniques. 

We will explain why the correlation coefficient is 
an unsuitable indicator of the degree of agreement 
(concordance) between two quantitative measuring 
techniques. Rather, the results obtained by them 
should be displayed graphically, as we will demon-
strate below, so that the physician can directly assess 
the quality of agreement. 

Measuring the agreement of a new technique with a 
gold standard includes determining the measuring 
error of the new technique. In principle, however, this 
is done in precisely the same way as determining the 
degree of agreement of two measuring techniques that 
are both susceptible to error.

Sometimes, one would like to assess the agreement 
between two raters of a nominal variable (e.g., “in-
fluenza,” “flu-like illness,” or “other”), or of a vari-
able that is both nominal and ordinal (e.g., “good,” 
“fair,” or “poor”). For instance, one might like to 
know how closely two high-school teachers agree on 
gradings of term papers, or how closely two doctors 
agree when diagnosing patients as “healthy” or “ill.” 
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Our present concern is not whether the raters give 
correct ratings, but rather how closely they agree. 
The situation becomes more complicated if we want 
to know how closely more than two raters agree with 
one another; we will not discuss this any further here.

We will present descriptive methods of evaluating 
interrater agreement visually and quantitatively. Such 
methods constitute what is called concordance analy-
sis. Our discussion will center on Bland-Altman 
 diagrams and Cohen’s kappa. We will deal with two 
different situations: In one situation, two raters 
 assign a nominal rating, such as “healthy” or “ill” 
 (dichotomous) or “influenza,” “flu-like illness,” or 
“other” (more than two alternatives), to the n members 
of a sample of persons or objects to be rated. In the 
other situation, two raters assign a numerical quantity 

along a continuous scale to each member of the 
sample.

Ratings on a continuous scale
Most physical measurements are on a continuous 
 numerical scale. Often, there is more than one tech-
nique or instrument for measuring the quantity in 
question, and the question arises how closely these 
techniques agree (1). If one wishes to introduce a 
new method of measuring a medical variable, one 
must first evaluate its validity by checking how well 
it agrees with an already established method, or with 
a gold standard. 

In this section, we will present statistical methods 
for comparing two measuring techniques and apply 
them to some fictitious examples. We assume that 
some number n of persons or objects (perhaps 100 of 
them) undergo measurement with each of the two 
techniques, yielding a total of n pairs of measure-
ments. As a first step, the measurements obtained by 
the two techniques are plotted against each other in a 
graph: one point is plotted for each member of the 
sample, its x-coordinate being the measurement ob-
tained by the first technique and its y-coordinate the 
measurement obtained by the second technique. If 
the two techniques agree perfectly or nearly so, then 
all the plotted points should lie on or near the diago -
nal line x = y.

Two distinct and readily understandable situations 
are shown in Figures 1a and 1b (Examples a and b). 
Any pair of measurements that were precisely equal 
(Measurement 1 = Measurement 2) would be plotted 
as a point lying on the diagonal line x = y, which is 
drawn on both graphs. In Example a, the two measur-
ing techniques agree closely; in Example b, however, 
the plot at once reveals that the difference between 
Measurements 1 and 2 varies ever more widely for 
increasing values and is greater overall than in 
Example a. 

A more informative way of displaying such rela-
tionships is the so-called Bland-Altman diagram, 
shown for the two Examples in Figures 2a and 2b. As 
before, each pair of measurements is plotted in the 
x-y plane, but in a different way: The average of the 
two measurements is plotted as the x-coordinate, and 
the difference between them as the y-coordinate. In 
addition, the mean of all differences is plotted as a 
solid horizontal line, and two additional (dotted) 
horizontal lines are plotted above and below this line 
at a distance of 1.96 times the standard deviation of 
the differences. These two lines correspond to the 
 so-called limits of agreement. The mean-of-all-
 differences line indicates a systematic deviation of 
the two measuring techniques for which, in general, a 
correction can be introduced; the limits of agreement 
indicate the size of further deviations that in general, 
are not correctable. If the quantity being measured is 
normally distributed, then 5% of the measured differ-
ences ought to lie beyond the limits of agreement, 
i.e., more than 1.96 standard deviations above or 

FIGURE 1

Direct comparison of two raters with a point cloud and the 
diagonal line x = y; Measurement 1 vs Measurement 2 in the two 
examples discussed in the text: Example a above, Example b below
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below the mean of all differences (2). The factor 2 is 
often used, for simplicity, instead of 1.96; the latter, 
however, corresponds more precisely to the 97.5% 
quantile of the normal distribution. In summary, the 
Bland-Altman diagram is a useful aid that enables a 
visual comparison of measuring techniques. 

In Figure 2a, the Bland-Altman diagram for 
Example a confirms that the two measuring tech-
niques are in close agreement. The mean-of-all-
 differences line is very near 0; thus, there seems to be 
no systematic deviation between the measured values 
of the two techniques. In this example, the standard 
deviation of all differences is roughly 0.05. Assuming 
that the quantity being measured is normally dis-
tributed, we can conclude that the difference between 
the two measurements will be less than 0.1 in 95% of 

cases; this difference is small in relation to the 
measured quantities themselves. The distance be-
tween the two limits of agreement (in other words, 
the width of the region of agreement) is 0.2 in this 
example. 

When Bland-Altman diagrams are used in real-life 
situations to see how well two measuring techniques 
agree, the question whether the observed degree of 
agreement is good enough can only be answered in 
relation to the particular application for which the 
techniques are to be used (i.e., “good enough for 
what?”). Prospective users must decide how closely 
the measurements must agree (otherwise stated: how 
narrow the band between the limits of agreement 
must be) to be acceptable for clinical purposes. 
Tetzlaff et al. (1), for instance, compared magnetic 

FIGURE 2

Comparison of two raters with a Bland-Altman diagram; 
diagrams are shown for Example a (above) and Example b (below)

FIGURE 3

Point cloud diagrams for comparing two functionally related 
measuring techniques; Measurement 1 vs Measurement 2 for 
Example c (above) and Example d (below)
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resonance imaging (MRI) with spirometry for a 
 specific clinical application using Bland-Altman dia-
grams (among other methods) and found the degree 
of agreement to be satisfactory.

The Bland-Altman diagram for Example b (Figure 
2b) immediately reveals more than one limitation to 
the agreement of the two measuring techniques being 
investigated. The mean difference between the two 
measurements is once again near zero, but the limits 
of agreement are 1.4 units above and below the mean 
value, i.e., one can expect 95% of all measured 
 differences to lie in the range –1.4 to +1.4. The 
 physician must decide whether a deviation of this 
magnitude is acceptable. Moreover, the non-uniform 
distribution of the points in this diagram indicates 
systematic distortion (systematic bias). 

Even so, however, poor agreement in a Bland-
 Altman diagram should not lead us to reject a new 
measuring technique prematurely. In Figure 3, two 
further cases (Examples c and d) are shown in which 
the two measuring techniques obviously do not agree 
(the plotted points lie far away from the line of agree-
ment), yet they are nonetheless functionally related, 
as the regression curve shows in each case. The 
 relation between the two techniques is linear in 
Example c (Figure 3c), nonlinear in Example d 
 (Figure 3d). 

Thus, it often happens that one measurement can 
be accurately predicted from the other one because 
the two of them are clearly functionally related, even 
though the two measurements themselves yield very 
different values. In Figure 3d, for example, when 
Measurement 1 yields the value 3.0, we can use the 
regression curve to estimate that Measurement 2 will 
yield the value 7.65. The apparent lack of agreement 
between the two measuring techniques is thus largely 
correctable. Having “corrected” Measurement 2 in 
this way by means of the regression curve—which 
corresponds to our best estimate of the functional re-
lation between the two measurements—we can com-
pare the corrected Measurement 2 with Measurement 
1 using the methods already described, e.g., a new 
Bland-Altman diagram. This procedure closely re-
sembles the calibration of a measuring instrument. 
The determination of the functional relation itself, 
i.e., the generation of regression curves of the types 
seen in Figure 3, requires a variety of statistical 
methods, such as linear and nonlinear regression, that 
we cannot discuss here in any further detail. 

The Pearson correlation coefficient (2) between 
the two measuring techniques is often considered to 
demonstrate a linear relationship (thus, a specific 
kind of functional relationship) between them. In-
deed, a coefficient with a high absolute value (near 1 
or –1) does indicate such a relationship. A common 
error, however, is to misinterpret the implications of 
significance tests that are applied to correlation co -
efficients. A finding that the correlation between two 
measuring techniques differs significantly from zero 
does not necessarily indicate that the two techniques 

BOX 1 

Calculating Cohen’s kappa: an illustrative example

Let us suppose that two doctors (Raters 1 and 2) examine 110 patients for 
the presence of a particular disease and then state whether each patient is 
healthy or ill. Suppose further that Raters 1 and 2 arrive at the same diagno-
sis in 70 of 110 patients. The above contingency table contains all of the 
 relevant data on the absolute and relative frequencies of agreement and dis-
agreement in our fictitious example.

Raters 1 and 2 agreed on the diagnosis “healthy” in 45% of cases, and 
they agreed on the diagnosis “ill” in 18% of cases. Their probability of agree-
ment is thus p0 = 70/110 = 45% + 18% = 63%. Yet, even if one rater (or both) 
were assigning diagnoses at random, the two of them would sometimes 
agree. The expected probability of agreement if this were so can be calculat -
ed from the marginal frequencies in the contingency table (which are given in 
the boxes marked “row totals” and “column totals”). Mathematically speaking, 
this is the situation called stochastic independence: One rater’s judgment 
contains no information at all about the other rater’s judgment.

For clarity in the following discussion, we will not always represent frac -
tions and probabilities as percentages, but will sometimes write them as 
numbers between 0 and 1 instead: for example, 0.54, rather than 54%. 

Now, if one rater were assigning diagnoses at random, we would expect 
agreement on the diagnosis “healthy” with probability 0.54 × 0.73 = 0.39, and 
agreement on the diagnosis “ill” with probability 0.45 × 0.27 = 0.12. The over-
all probability of agreement if one rater assigns diagnoses at random is thus 
pe = 0.54 × 0.73 + 0.45 × 0.27 = 0.52 (57.2 of 110 cases). In other words, 
there would be agreement in 52% of cases, rather than 63%, as was actually 
observed. The observed probability of agreement exceeds the probability 
that would have been expected from random diagnosis by the amount p0 – pe 
= 63% – 52% = 11%.

We now “norm” the excess frequency of agreement over chance in order 
to obtain a quantity that cannot be higher than 1. We do so by dividing the 
value p0 – pe , whatever it may be, by the highest value it can theoretically 
have, which is 1 – pe . In our example, 1 – pe = 100% – 52%. This theoretical 
highest value of p0 –  pe corresponds to the case where the raters agree 100% 
of the time. The normed value κ2 = (p0 – pe)/(1 – pe) is called Cohen’s kappa. 
In our example, Cohen’s kappa has the value 11% / (100% – 52%) = 0.23.

Cohen’s kappa equals 1 when the two raters agree in every case; it is 0 
when they agree just as frequently as would have been expected if one rater 
(or both) were assigning ratings at random. Cohen’s kappa hardly ever takes 
on its theoretical minimum value of –1.

Rater 1 

healthy

ill

column totals

Rater 2

healthy 

50 (0.45)

30 (0.27)

80 (0.73)

ill

10 (0.09)

20 (0.18)

30 (0.27)

row totals

60 (0.54)

50 (0.45)

110
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are in good agreement. Even the slightest, practically 
irrelevant relationship between two techniques could, 
in principle, yield a statistically significant finding of 
this type. A “significant” correlation actually con-
tains no information at all about the size of the dis-
agreement between the two types of measurement (3, 4). 

Ratings on a nominal scale: Cohen’s kappa
We now turn to the topic of ratings on a nominal 
scale. In medical research, the degree of agreement 
between two raters is often assessed with a measure 
called Cohen’s kappa. Song et al. (5), for example, 
compared two methods of detecting bone metastases, 
which turned out to agree well, with a kappa value of 
0.732. What Cohen’s kappa measures, concisely 
stated, is the normed difference between the rate of 
agreement that is actually observed and the rate of 
agreement that would be expected purely by chance. 

What does this mean in concrete terms? We will 
use a fictitious example to illustrate the use of 
Cohen’s kappa for a dichotomous rating. The 
 procedure for calculating Cohen’s kappa is described 
in greater detail in Box 1. Let us assume that two doc-
tors examine 110 patients for the presence of a par-
ticular disease and then state whether, in their 
opinion, each patient is or is not suffering from the 
disease (the “healthy”/“ill” dichotomy). We wish to 
know how closely the two doctors’ diagnoses agree, 
i.e., how concordant they are. The 110 diagnoses of 
the two doctors are shown in the Table in Box 1. 

The two doctors arrived at the same diagnosis in 
70 of 110 cases. This figure alone, however, is not 
very useful in assessing concordance, because a cer-
tain number of like judgments would be expected 
even if one of the doctors (or both!) were assigning 
diagnoses entirely at random. On average, in this par-
ticular example, approximately 57 agreements would 
be expected by chance alone, as explained in Box 1. 
Cohen’s kappa reflects the difference between this 
number (57) and the observed number of agreements 
(70), in relation to the total number of cases (110). In 
our example, Cohen’s kappa is 0.23. The value of 
Cohen’s kappa would be 1 if the two raters agreed in 
every case, i.e., if they were fully concordant; on the 
other hand, a value of 0 would indicate that the two 
raters agreed only as often as they would by chance. 
This would be a very discouraging finding indeed. A 
negative value of Cohen’s kappa would indicate that 
the two raters agreed even less often than they would 
by chance, i.e., that they tended to make opposite 
judgments. A value of –1 would mean that the two 
raters arrived at opposite judgments in absolutely 
every case; this situation clearly arises very rarely, if 
ever.

The interpretation of a statistic such as Cohen’s 
kappa is, in the end, arbitrary. Altman (2) suggested 
categorizing values of Cohen’s kappa as shown in 
Table 1. In the example of Box 1, the calculated value 
κ2 = 0.23 would be considered to indicate no more 
than a fair degree of agreement.

Box 2 generalizes the foregoing discussion to nom-
inal rating scales with any number of categories, i.e., 
to scales with k ≥ 2. Until now, we have only been dis-
cussing dichotomous scales, for which, by definition, 
k = 2.

Cohen’s kappa gives a quantitative assessment of 
how well two raters agree, but the value of Cohen’s 
kappa itself conveys no information about the reliabil-
ity of this assessment. A value determined from a small 
number of patients is unreliable; therefore, as in many 
other situations in biomedical statistics, the value of 
Cohen’s kappa should be stated together with the 
 associated confidence interval (Box 3) (6). 

In practice, Cohen’s kappa is often used as a 
 one-sided test of whether the interrater agreement is 
strong enough to rule out random judgments by (at 

BOX 2 

Cohen’s kappa for scales with k categories (k ≥ 2)
The contingency table below applies to the more general problem of comparing 
two raters who use a rating scale with an arbitrary number of categories—not 
 necessarily two, as in our discussion up to this point. The row and column totals 
are ai. = ai1 +…+ aik und a.i = a1i +…+ aki , respectively. The overall frequency of 
agreement p0 is given by p0 = 1/n × (a11 + a22 + … + akk), i.e., p0 equals the sum of 
the diagonal entries in the contingency table divided by the size of the sample. 
Now, two stochastically independent raters would agree at a frequency pe that we 
calculate as pe = a1./n × a.1/n + a2./n × a.2/n +…+ aκ./n × a.k/n , i.e., pe equals the 
sum of the products of the marginal frequencies relating to each diagonal entry of 
the general contingency table. Cohen’s kappa for k categories is defined just as it 
was previously for k = 2, namely by the formula κk = (p0-pe)/(1-pe) . 

TABLE 1

Categorization of values of Cohen’s kappa (2)

Value of κk

<0.20

0.21–0.40

0.41–0.60

0.61–0.80

0.81–1.0

Quality of agreement

Poor

Fair

Moderate

Good

Very good

1

2

. . .

k

1

a11

a21

. . .

ak1

a.1

2

a12

a22

. . .

ak2

a.2

. . .

. . .

. . .

. . .

. . .

. . .

k

a1k

a2k

. . .

akk

a.k

a1.

a2.

. . .

ak.

n
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least) one rater. A statistically significant test result is 
often wrongly interpreted as an objective indication of 
agreement. In fact, this finding says next to nothing 
about the degree of agreement between the two raters: 
even a very low positive value of Cohen’s kappa can be 
statistically significant, as long as the sample on which 
it is based is large enough. Thus, the use of significance 
tests to judge concordance is a mistake. 

Cohen’s kappa can be further refined and general-
ized. When comparing ordinal ratings, one may wish to 
give different weights to the differences between two 
consecutive ratings (e.g., so that the difference between 
“good” and “excellent” counts more than that between 
“fair” and “poor”). A weighted kappa is used for this 
purpose. Interrater agreement can be assessed in other 
situations, too, e.g., with more than two raters (7).

Sensitivity and specificity are often used to compare 
a dichotomous rating technique with a gold standard 
(8). These two statistics describe the degree of agree-
ment between the technique in question and the gold 
standard, in each of the two subpopulations that the 
gold standard defines. In contrast, Cohen’s kappa is a 
single quantity that provides a global assessment of the 
agreement between the technique in question and the 
gold standard.

Discussion
Statistical methods of assessing the degree of agree-
ment between two raters or two measuring techniques 
are used in two different situations:
●  ratings on a continuous scale, and
● categorical (nominal) ratings. 
In the first situation, it is advisable to use descriptive 

and graphical methods, such as point-cloud plots 
around the line of agreement and Bland-Altman 
 diagrams. Although point clouds are more intuitive and 
perspicuous, Bland-Altman diagrams enable a more 
 detailed analysis in which the differences between the 
two raters are assessed not just qualitatively, but also 
quantitatively. The limits of agreement in a Bland-
 Altman diagram may be unsuitable for assessing the 
agreement between two measuring techniques if the 
differences between measured values are not normally 
distributed. In such cases, empirical quantiles can be 
used instead.

The distribution of the differences between two 
measured values can be studied in greater detail if, as 
first step, these differences are plotted on a histogram 
(3). In many cases, when the two measuring techniques 
are linked by a good linear (or other functional) rela-
tionship, it will be possible to predict one of the 
measurements from the other one, even if the two tech-
niques yield very different results at first glance. The 
Pearson correlation coefficient is a further type of 
 descriptive statistic; it indicates the presence of a linear 
relationship. A significantly nonzero correlation coeffi-
cient, however, cannot be interpreted as implying that 
two raters are concordant, as their ratings may still 
deviate from each other very strongly even when a 
 significant correlation is present.

BOX 3 

The confidence interval for Cohen’s kappa
In general, the value of any descriptive statistic (e.g, a sample mean) conveys no 
information about its applicability to the overall population (not just to the sample 
on which it is based). For this reason, descriptive statistics are usually reported 
with a confidence interval. An approximate 1-α confidence interval for Cohen’s 
kappa of the overall population can be calculated with the following formula: 

In this formula, z1-α/2 is the(1-α/2) quantile of the standard normal distribution, 
whose values are listed in statistical tables (9). In the present case, we are ma-
king use of an approximation to the normal distribution. The following rule of 
thumb is often helpful: such an approximation is acceptably accurate as long as 
n × p 0 ≥ 5 and n × (1-p0) ≥ 5.

We can now calculate a confidence interval for the numerical example presen-
ted above in Box 1 and discussed in the corresponding section of the text. The 
sample size is n = 110; furthermore, as we have already calculated, pe = 0.52, 
p0 = 0.63, and κ2 = 0.23. Setting α= 5%, we now read from a statistical table that 
z0.975 = 1.96. Using the formula above, we find:

CI = 0.23 ± 1.96 × 0.0959

Equivalently stated, the 95% confidence interval for Cohen’s kappa of the overall 
population is 0.042 to 0.418.

KEY MESSAGES

● The mere demonstration that a correlation coefficient 
differs significantly from 0 is totally unsuitable for con-
cordance analysis. Such tests are often wrongly used.

● The appropriate method for concordance analysis de-
pends on the type of scale used by the measuring or 
 rating techniques that are to be compared.

● The point-cloud diagram, the Bland-Altman diagram, and 
 Cohen’s kappa are suitable methods for concordance 
analysis.

● Concordance analysis cannot be used to judge the 
 correctness of measuring or rating techniques; rather, it 
shows the degree to which different measuring or rating 
techniques agree with each other.
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Cohen’s kappa is a suitable tool for assessing the de-
gree of agreement between two raters for categorical 
(nominal) ratings. A confidence interval for Cohen’s 
kappa can be calculated as well. 
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